Documentation
Comprehensive guides, tutorials, and reference materials for implementing Prompt Folding™ in your AI applications.
Quick Start Guide
Get Started in 5 Minutes
Install the SDK
Choose your preferred language and install the Prompt Folding™ library
Configure Your API Key
Set up authentication with your preferred AI model provider
Create Your First Fold
Build and test your first hierarchical prompt structure
Optimize & Deploy
Fine-tune your prompts and deploy to production
# Install the Python SDK pip install prompt-folding # Basic implementation from prompt_folding import PromptFolder folder = PromptFolder(api_key="your-key") # Create a simple fold result = folder.fold({ "context": { "system": "Expert AI assistant", "domain": "Technical support" }, "layers": [ {"type": "comprehension", "weight": 0.3}, {"type": "generation", "weight": 0.7} ] }) print(result.optimized_prompt)
Documentation Sections
Getting Started
Installation guides, basic setup, and your first prompt fold implementation.
Core Concepts
Understanding hierarchical composition, recursive optimization, and adaptive context management.
API Reference
Complete API documentation with examples for all endpoints and methods.
Tutorials
Step-by-step tutorials for common use cases and advanced implementations.
Best Practices
Optimization strategies, performance tips, and production deployment guidelines.
FAQ
Frequently asked questions and troubleshooting guides for common issues.
Community Forum
Connect with AI developers, share solutions, and contribute to the future of prompt engineering
Categories
Top Contributors
Trending Topics
Implementing PromptFolding in a Large-Scale Chatbot System
Best practices for implementing PromptFolding in production?
Showcase: 70% Token Reduction in Customer Service AI
Best Practices for Multi-Language Prompt Optimization
Integration Guide: PromptFolding with LangChain
Performance Comparison: PromptFolding vs Traditional Methods
Join the Conversation
Connect with thousands of AI developers, share your projects, and help shape the future of prompt engineering.
Code Examples
import prompt_folding as pf # Initialize the folder folder = pf.PromptFolder( api_key="your-openai-key", model="gpt-4" ) # Create a complex fold fold_config = { "context": { "system": "Expert AI assistant", "domain": "Technical support", "tone": "Professional" }, "layers": [ { "type": "comprehension", "weight": 0.3, "focus": "user_intent" }, { "type": "generation", "weight": 0.7, "focus": "response_quality" } ], "optimization": { "target_tokens": 150, "quality_threshold": 0.8 } } # Fold the prompt result = folder.fold(fold_config) print(f"Original tokens: {result.original_tokens}") print(f"Optimized tokens: {result.optimized_tokens}") print(f"Reduction: {result.reduction_percentage}%") print(f"Quality score: {result.quality_score}")
import { PromptFolder } from '@prompt-folding/core'; // Initialize the folder const folder = new PromptFolder({ apiKey: 'your-openai-key', model: 'gpt-4' }); // Create a fold configuration const foldConfig = { context: { system: 'Expert AI assistant', domain: 'Technical support', tone: 'Professional' }, layers: [ { type: 'comprehension', weight: 0.3, focus: 'user_intent' }, { type: 'generation', weight: 0.7, focus: 'response_quality' } ], optimization: { targetTokens: 150, qualityThreshold: 0.8 } }; // Fold the prompt const result = await folder.fold(foldConfig); console.log(`Original tokens: ${result.originalTokens}`); console.log(`Optimized tokens: ${result.optimizedTokens}`); console.log(`Reduction: ${result.reductionPercentage}%`); console.log(`Quality score: ${result.qualityScore}`);
Ready to Get Started?
Join thousands of developers who are already using PromptFolding to optimize their AI applications.