Documentation v2.1

Documentation

Comprehensive guides, tutorials, and reference materials for implementing Prompt Folding™ in your AI applications.

Quick Start Guide

Get Started in 5 Minutes

1

Install the SDK

Choose your preferred language and install the Prompt Folding™ library

2

Configure Your API Key

Set up authentication with your preferred AI model provider

3

Create Your First Fold

Build and test your first hierarchical prompt structure

4

Optimize & Deploy

Fine-tune your prompts and deploy to production

QUICK START EXAMPLE
# Install the Python SDK
pip install prompt-folding

# Basic implementation
from prompt_folding import PromptFolder

folder = PromptFolder(api_key="your-key")

# Create a simple fold
result = folder.fold({
  "context": {
    "system": "Expert AI assistant",
    "domain": "Technical support"
  },
  "layers": [
    {"type": "comprehension", "weight": 0.3},
    {"type": "generation", "weight": 0.7}
  ]
})

print(result.optimized_prompt)

Documentation Sections

Getting Started

Installation guides, basic setup, and your first prompt fold implementation.

5 min read

Core Concepts

Understanding hierarchical composition, recursive optimization, and adaptive context management.

15 min read

API Reference

Complete API documentation with examples for all endpoints and methods.

Reference

Tutorials

Step-by-step tutorials for common use cases and advanced implementations.

Tutorials

Best Practices

Optimization strategies, performance tips, and production deployment guidelines.

Best Practices

FAQ

Frequently asked questions and troubleshooting guides for common issues.

FAQ

Community Forum

Connect with AI developers, share solutions, and contribute to the future of prompt engineering

2,847
members
1,234
discussions
3,456
solutions
156
online

Categories

Top Contributors

LC
Dr. Lisa Chan
Lead AI Engineer
2847
156 solutions
MR
Marcus Rodriguez
CTO
2156
98 solutions
EW
Dr. Emily Watson
Senior ML Engineer
1892
87 solutions
AT
Alex Thompson
Product Manager
1654
73 solutions

Trending Topics

#optimization
234+15%
#integration
189+23%
#performance
156+8%
#chatbot
123+31%
#multilingual
98+12%
LC
SolvedTechnical Support

Implementing PromptFolding in a Large-Scale Chatbot System

Dr. Lisa ChanLead AI EngineerTechCorp AI
#chatbot#scale#implementation
23 replies456 views
2 hours ago

Best practices for implementing PromptFolding in production?

Dr. Lisa Chan
#implementation#production#best-practices
8 replies156 views

Showcase: 70% Token Reduction in Customer Service AI

Dr. Lisa Chan
#showcase#token-reduction#customer-service
12 replies234 views
EW
General Discussion

Best Practices for Multi-Language Prompt Optimization

Dr. Emily WatsonSenior ML EngineerDataFlow Systems
#multilingual#best-practices#optimization
31 replies789 views
6 hours ago
AT
SolvedIntegrations

Integration Guide: PromptFolding with LangChain

Alex ThompsonProduct ManagerAI Solutions Inc
#langchain#integration#guide
8 replies123 views
1 day ago
MP
General Discussion

Performance Comparison: PromptFolding vs Traditional Methods

Dr. Michael ParkResearch DirectorNeural Systems Inc
#performance#comparison#research
42 replies1234 views
2 days ago

Join the Conversation

Connect with thousands of AI developers, share your projects, and help shape the future of prompt engineering.

Code Examples

PYTHON EXAMPLE
import prompt_folding as pf

# Initialize the folder
folder = pf.PromptFolder(
    api_key="your-openai-key",
    model="gpt-4"
)

# Create a complex fold
fold_config = {
    "context": {
        "system": "Expert AI assistant",
        "domain": "Technical support",
        "tone": "Professional"
    },
    "layers": [
        {
            "type": "comprehension",
            "weight": 0.3,
            "focus": "user_intent"
        },
        {
            "type": "generation",
            "weight": 0.7,
            "focus": "response_quality"
        }
    ],
    "optimization": {
        "target_tokens": 150,
        "quality_threshold": 0.8
    }
}

# Fold the prompt
result = folder.fold(fold_config)

print(f"Original tokens: {result.original_tokens}")
print(f"Optimized tokens: {result.optimized_tokens}")
print(f"Reduction: {result.reduction_percentage}%")
print(f"Quality score: {result.quality_score}")
JAVASCRIPT EXAMPLE
import { PromptFolder } from '@prompt-folding/core';

// Initialize the folder
const folder = new PromptFolder({
  apiKey: 'your-openai-key',
  model: 'gpt-4'
});

// Create a fold configuration
const foldConfig = {
  context: {
    system: 'Expert AI assistant',
    domain: 'Technical support',
    tone: 'Professional'
  },
  layers: [
    {
      type: 'comprehension',
      weight: 0.3,
      focus: 'user_intent'
    },
    {
      type: 'generation',
      weight: 0.7,
      focus: 'response_quality'
    }
  ],
  optimization: {
    targetTokens: 150,
    qualityThreshold: 0.8
  }
};

// Fold the prompt
const result = await folder.fold(foldConfig);

console.log(`Original tokens: ${result.originalTokens}`);
console.log(`Optimized tokens: ${result.optimizedTokens}`);
console.log(`Reduction: ${result.reductionPercentage}%`);
console.log(`Quality score: ${result.qualityScore}`);

Ready to Get Started?

Join thousands of developers who are already using PromptFolding to optimize their AI applications.

Get Early Access
View Documentation
Contact Us