Examples
Code Examples
Practical examples and code snippets to help you integrate Prompt Folding™ into your applications. From simple prompts to complex hierarchical structures.
Quick Examples
⚡
Basic Prompt Folding
Python
import prompt_folding client = prompt_folding.Client(api_key="YOUR_API_KEY") # Simple prompt optimization result = client.fold( prompt="Explain quantum computing in detail", optimization_level="balanced" ) print(f"Original: {result.original_tokens} tokens") print(f"Folded: {result.folded_tokens} tokens") print(f"Reduction: {result.reduction_percentage}%")
JavaScript
import { PromptFolding } from '@prompt-folding/core'; const client = new PromptFolding('YOUR_API_KEY'); // Simple prompt optimization const result = await client.fold({ prompt: 'Explain quantum computing in detail', optimizationLevel: 'balanced' }); console.log(`Original: ${result.originalTokens} tokens`); console.log(`Folded: ${result.foldedTokens} tokens`); console.log(`Reduction: ${result.reductionPercentage}%`);
🎯
Context-Aware Folding
Python
# Context-aware optimization result = client.fold( prompt="Create a marketing campaign", context="Target audience: Tech professionals aged 25-40", optimization_level="aggressive", preserve_quality=True ) print(f"Quality score: {result.quality_score}") print(f"Folded prompt: {result.folded_prompt}")
JavaScript
// Context-aware optimization const result = await client.fold({ prompt: 'Create a marketing campaign', context: 'Target audience: Tech professionals aged 25-40', optimizationLevel: 'aggressive', preserveQuality: true }); console.log(`Quality score: ${result.qualityScore}`); console.log(`Folded prompt: ${result.foldedPrompt}`);
Use Case Examples
📝
Content Generation
Optimize prompts for blog posts, articles, and marketing content
Blog Post Generation
# Blog post with hierarchical structure blog_prompt = """ Write a comprehensive blog post about AI trends in 2024. Include: - Introduction - Key trends - Industry impact - Future predictions - Conclusion """ result = client.fold( prompt=blog_prompt, context="Tech blog audience, 1500 words", optimization_level="balanced" ) # Use the folded prompt with your AI model response = ai_model.generate(result.folded_prompt)
Marketing Copy
# Marketing copy optimization marketing_prompt = """ Create compelling marketing copy for our AI platform. Focus on: - Problem statement - Solution benefits - Call to action - Social proof """ result = client.fold( prompt=marketing_prompt, context="B2B SaaS, enterprise decision makers", optimization_level="aggressive", target_tokens=200 ) print(f"Optimized for {result.folded_tokens} tokens")
📊
Data Analysis
Optimize prompts for data analysis and reporting tasks
Data Visualization
# Data visualization prompt viz_prompt = """ Analyze this sales data and create visualizations: - Monthly revenue trends - Product performance - Customer segments - Geographic distribution Data: {sales_data} """ result = client.fold( prompt=viz_prompt, context="Business intelligence dashboard", optimization_level="balanced" ) # Generate visualizations with optimized prompt charts = ai_model.generate_charts(result.folded_prompt)
Report Generation
# Automated report generation report_prompt = """ Generate a quarterly business report including: - Executive summary - Financial highlights - Key metrics - Recommendations - Risk assessment Data sources: {financial_data} """ result = client.fold( prompt=report_prompt, context="C-level executives, board members", optimization_level="minimal", preserve_quality=True ) report = ai_model.generate_report(result.folded_prompt)
💻
Code Generation
Optimize prompts for code generation and software development
API Integration
# API integration code generation api_prompt = """ Create a Python client for the Prompt Folding API. Include: - Authentication - Error handling - Rate limiting - Retry logic - Type hints """ result = client.fold( prompt=api_prompt, context="Production-ready Python library", optimization_level="balanced" ) # Generate the client code client_code = ai_model.generate_code(result.folded_prompt)
Testing Framework
# Test suite generation test_prompt = """ Generate comprehensive tests for a React component. Include: - Unit tests - Integration tests - Edge cases - Accessibility tests - Performance tests Component: {component_code} """ result = client.fold( prompt=test_prompt, context="Jest + React Testing Library", optimization_level="aggressive" ) test_suite = ai_model.generate_tests(result.folded_prompt)
Advanced Patterns
BATCH
Batch Processing
Process multiple prompts efficiently with batch operations.
Python Batch
# Batch processing multiple prompts prompts = [ {"id": "blog_1", "text": "Write about AI trends"}, {"id": "blog_2", "text": "Explain machine learning"}, {"id": "blog_3", "text": "Discuss data science"} ] batch_result = client.fold_batch( prompts=prompts, optimization_level="balanced" ) for result in batch_result.results: print(f"{result.id}: {result.reduction_percentage}% reduction")
JavaScript Batch
// Batch processing multiple prompts const prompts = [ { id: 'blog_1', text: 'Write about AI trends' }, { id: 'blog_2', text: 'Explain machine learning' }, { id: 'blog_3', text: 'Discuss data science' } ]; const batchResult = await client.foldBatch({ prompts, optimizationLevel: 'balanced' }); batchResult.results.forEach(result => { console.log(`${result.id}: ${result.reductionPercentage}% reduction`); });
HIERARCHY
Hierarchical Structures
Create complex hierarchical prompt structures for advanced use cases.
# Hierarchical prompt structure hierarchical_prompt = """ SYSTEM: You are an expert content strategist. CONTEXT: - Industry: Technology - Audience: Enterprise decision makers - Format: Executive summary STRUCTURE: 1. Problem Analysis - Current challenges - Market dynamics - Competitive landscape 2. Solution Framework - Strategic approach - Implementation roadmap - Success metrics 3. Risk Assessment - Potential obstacles - Mitigation strategies - Contingency plans TASK: Create a comprehensive strategy document. """ result = client.fold( prompt=hierarchical_prompt, context="Strategic consulting report", optimization_level="balanced" ) # The folded prompt maintains the hierarchical structure # while reducing token count significantly
Performance Tips
Optimization Strategies
- ⚡Use
balanced
optimization for most use cases - 🎯Set
target_tokens
for specific requirements - 🔒Enable
preserve_quality
for critical content - 📦Use batch processing for multiple prompts
Best Practices
- 📝Provide clear context for better optimization
- 🔄Cache folded prompts for repeated use
- ⚖️Balance token reduction with quality preservation
- 📊Monitor quality scores and adjust accordingly
Ready to Start Building?
Get your API key and start optimizing prompts with these examples.