Examples
Code Examples
Practical examples and code snippets to help you integrate Prompt Folding™ into your applications. From simple prompts to complex hierarchical structures.
Quick Examples
⚡
Basic Prompt Folding
Python
import prompt_folding
client = prompt_folding.Client(api_key="YOUR_API_KEY")
# Simple prompt optimization
result = client.fold(
prompt="Explain quantum computing in detail",
optimization_level="balanced"
)
print(f"Original: {result.original_tokens} tokens")
print(f"Folded: {result.folded_tokens} tokens")
print(f"Reduction: {result.reduction_percentage}%")JavaScript
import { PromptFolding } from '@prompt-folding/core';
const client = new PromptFolding('YOUR_API_KEY');
// Simple prompt optimization
const result = await client.fold({
prompt: 'Explain quantum computing in detail',
optimizationLevel: 'balanced'
});
console.log(`Original: ${result.originalTokens} tokens`);
console.log(`Folded: ${result.foldedTokens} tokens`);
console.log(`Reduction: ${result.reductionPercentage}%`);🎯
Context-Aware Folding
Python
# Context-aware optimization
result = client.fold(
prompt="Create a marketing campaign",
context="Target audience: Tech professionals aged 25-40",
optimization_level="aggressive",
preserve_quality=True
)
print(f"Quality score: {result.quality_score}")
print(f"Folded prompt: {result.folded_prompt}")JavaScript
// Context-aware optimization
const result = await client.fold({
prompt: 'Create a marketing campaign',
context: 'Target audience: Tech professionals aged 25-40',
optimizationLevel: 'aggressive',
preserveQuality: true
});
console.log(`Quality score: ${result.qualityScore}`);
console.log(`Folded prompt: ${result.foldedPrompt}`);Use Case Examples
📝
Content Generation
Optimize prompts for blog posts, articles, and marketing content
Blog Post Generation
# Blog post with hierarchical structure
blog_prompt = """
Write a comprehensive blog post about AI trends in 2024.
Include:
- Introduction
- Key trends
- Industry impact
- Future predictions
- Conclusion
"""
result = client.fold(
prompt=blog_prompt,
context="Tech blog audience, 1500 words",
optimization_level="balanced"
)
# Use the folded prompt with your AI model
response = ai_model.generate(result.folded_prompt)Marketing Copy
# Marketing copy optimization
marketing_prompt = """
Create compelling marketing copy for our AI platform.
Focus on:
- Problem statement
- Solution benefits
- Call to action
- Social proof
"""
result = client.fold(
prompt=marketing_prompt,
context="B2B SaaS, enterprise decision makers",
optimization_level="aggressive",
target_tokens=200
)
print(f"Optimized for {result.folded_tokens} tokens")📊
Data Analysis
Optimize prompts for data analysis and reporting tasks
Data Visualization
# Data visualization prompt
viz_prompt = """
Analyze this sales data and create visualizations:
- Monthly revenue trends
- Product performance
- Customer segments
- Geographic distribution
Data: {sales_data}
"""
result = client.fold(
prompt=viz_prompt,
context="Business intelligence dashboard",
optimization_level="balanced"
)
# Generate visualizations with optimized prompt
charts = ai_model.generate_charts(result.folded_prompt)Report Generation
# Automated report generation
report_prompt = """
Generate a quarterly business report including:
- Executive summary
- Financial highlights
- Key metrics
- Recommendations
- Risk assessment
Data sources: {financial_data}
"""
result = client.fold(
prompt=report_prompt,
context="C-level executives, board members",
optimization_level="minimal",
preserve_quality=True
)
report = ai_model.generate_report(result.folded_prompt)💻
Code Generation
Optimize prompts for code generation and software development
API Integration
# API integration code generation
api_prompt = """
Create a Python client for the Prompt Folding API.
Include:
- Authentication
- Error handling
- Rate limiting
- Retry logic
- Type hints
"""
result = client.fold(
prompt=api_prompt,
context="Production-ready Python library",
optimization_level="balanced"
)
# Generate the client code
client_code = ai_model.generate_code(result.folded_prompt)Testing Framework
# Test suite generation
test_prompt = """
Generate comprehensive tests for a React component.
Include:
- Unit tests
- Integration tests
- Edge cases
- Accessibility tests
- Performance tests
Component: {component_code}
"""
result = client.fold(
prompt=test_prompt,
context="Jest + React Testing Library",
optimization_level="aggressive"
)
test_suite = ai_model.generate_tests(result.folded_prompt)Advanced Patterns
BATCH
Batch Processing
Process multiple prompts efficiently with batch operations.
Python Batch
# Batch processing multiple prompts
prompts = [
{"id": "blog_1", "text": "Write about AI trends"},
{"id": "blog_2", "text": "Explain machine learning"},
{"id": "blog_3", "text": "Discuss data science"}
]
batch_result = client.fold_batch(
prompts=prompts,
optimization_level="balanced"
)
for result in batch_result.results:
print(f"{result.id}: {result.reduction_percentage}% reduction")JavaScript Batch
// Batch processing multiple prompts
const prompts = [
{ id: 'blog_1', text: 'Write about AI trends' },
{ id: 'blog_2', text: 'Explain machine learning' },
{ id: 'blog_3', text: 'Discuss data science' }
];
const batchResult = await client.foldBatch({
prompts,
optimizationLevel: 'balanced'
});
batchResult.results.forEach(result => {
console.log(`${result.id}: ${result.reductionPercentage}% reduction`);
});HIERARCHY
Hierarchical Structures
Create complex hierarchical prompt structures for advanced use cases.
# Hierarchical prompt structure
hierarchical_prompt = """
SYSTEM: You are an expert content strategist.
CONTEXT:
- Industry: Technology
- Audience: Enterprise decision makers
- Format: Executive summary
STRUCTURE:
1. Problem Analysis
- Current challenges
- Market dynamics
- Competitive landscape
2. Solution Framework
- Strategic approach
- Implementation roadmap
- Success metrics
3. Risk Assessment
- Potential obstacles
- Mitigation strategies
- Contingency plans
TASK: Create a comprehensive strategy document.
"""
result = client.fold(
prompt=hierarchical_prompt,
context="Strategic consulting report",
optimization_level="balanced"
)
# The folded prompt maintains the hierarchical structure
# while reducing token count significantlyPerformance Tips
Optimization Strategies
- ⚡Use
balancedoptimization for most use cases - 🎯Set
target_tokensfor specific requirements - 🔒Enable
preserve_qualityfor critical content - 📦Use batch processing for multiple prompts
Best Practices
- 📝Provide clear context for better optimization
- 🔄Cache folded prompts for repeated use
- ⚖️Balance token reduction with quality preservation
- 📊Monitor quality scores and adjust accordingly
Ready to Start Building?
Get your API key and start optimizing prompts with these examples.